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Abstract—A correct first evaluation of skin burn injury is 

essential as it is an important step in providing the first 

treatment to the patient by determining the burn depths. The 

objective of this paper is to conduct a comparative study of 

different types of classification algorithms on the classification 

of different burn depths by using an image mining approach. 

20 classification algorithms were compared on a skin burn 

dataset comprising skin burn images categorized into three 

classes by medical experts. The dataset was evaluated using 

both a supplied test set and 10-fold cross validation methods. 

Empirical results showed that the best classification algorithms 

that were able to classify most of the burn depths using a 

supplied test set were Logistic, Simple Logistic, 

MultiClassClassifier, OneR, and LMT, with an average 

accuracy of 68.9% whereas for 10-fold cross validation 

evaluation, the best result was obtained through the Simple 

Logistic algorithm with an average accuracy of 73.2%. It can 

be concluded that Simple Logistic has the potential to provide 

the best classification for the degree of skin burn depth. 

 

Index Terms—Skin Burn; Classification; Segmentation; 

Image Mining Approach. 

 

I. INTRODUCTION 

 

Human skin is the largest organ that covers the outer part of 

the body. Generally, human skin is made up of three layers 

as shown in Figure 1: (i) the epidermis, which is the 

outermost layer of the skin, (ii) the dermis, lay underneath 

the epidermis layer and is divided into two sub-layers, 

which are papillary layer (superficial) and reticular layer 

(deep) and (iii) the hypodermis, which is the inner layer of 

the skin, constitutes of fat and connective tissue [1]. 

 

 
Figure 1: Human skin structure [2] 

 

There are three degrees of skin burns: (i) First degree 

burn, which include only the epidermis, (ii) Second degree 

burn, classified into (a) superficial partial thickness burn, 

which involve the entire epidermis and the upper layer of 

the dermis (papillary layer) and (b) deep partial thickness 

burn, which involve the entire epidermis and most of the 

dermis, and (iii) Third degree burn, also known as full 

thickness burn, in which all the layers of the skin are 

destroyed, and some may extend into muscle and bone [3]. 

The severity of the burn injury is usually determined by the 

depth of the burn. 

Patients with burn injuries usually consult doctors for 

treatment, where assessment is based on visual findings on 

examination. Sometimes the depth of the burn is not easily 

defined, as there could be mixed depth appearance. Medical 

practitioners with limited experience may at times be 

confused with the depth and severity of the burns, especially 

in non-clear-cut cases. In rural areas, patients may only have 

access to other healthcare staff at nurse-led clinics. A wrong 

assessment of burn depth results in inappropriate and 

inaccurate initial management of the burn injuries. Such 

mistakes translates into poor healing process, infections, 

undesirable scars and reduced body functions post burns. 

The current state-of-the-art in burn depth classification is 

focused on identifying features that are capable of 

differentiating between healthy skin and the burn wound as 

well as being dependent on the feature selection performed 

by intelligent classifiers, such as deep learned convolutional 

neural network. However, the images used were manually 

registered with infrared markings [4]. 

In this work, an image mining approach is used to 

evaluate the image of a skin burn injury and to classify the 

burn injury into one of the burn depths. Based on the burn 

depth classification, suitable treatment can then be 

recommended. Many previous work in the literature used 

colour as the main characteristic to differentiate between 

different burn depths. However, this research work is 

focused on extracting both the colour and texture features. 

The feature extraction is carried out using discrete wavelet 

transform (DWT) and followed by applying principle 

component analysis (PCA) to reduce the feature dimensions 

[5, 6]. Gray Level Co-occurrence Matrix (GLCM) is then 

used to extract texture features from the decomposed images 

[6]. The classification was conducted using the binary 

classification approach, by taking one class versus all other 

classes. The evaluation measures used are accuracy, 

precision, recall, and F-measure. The main contribution of 

this work is the comparative study of classification of skin 

burn depths based on the features extracted. Another 

contribution includes a hybrid segmentation method, which 

used RGB threshold values to separate the body part from 

the background and Otsu’s method of thresholding [7] to 

separate the burn wound from the body part in the image. In 

addition, in feature extraction, both colour and texture 

features were adopted and used in combination. 
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II. LITERATURE REVIEW 

 

Previous works focused on evaluating the skin burn depth 

in order to reduce the specialist’s high experience 

requirement during visual examination. The works in the 

literature either used a segmentation-based approach, which 

meant segment the burn wound from the skin region in the 

image before feature extraction or a segmentation-free 

approach, which extracted features directly from the skin 

burn image. In this section, some works related to image 

acquisition methods, image segmentation algorithms, 

features extraction and image classification methods are 

presented. 

 

A. Image Acquisition Methods  

Acha et al. [8] proposed an acquisition protocol apart 

from the influence of illumination and the camera 

calibration issues that they identified when using a digital 

photographic camera. For illumination influence issue, they 

concluded that the xenon flash illumination was able to 

dominate the illumination after their experiments under 

three different situations, which were in a darkroom with 

built in flash, in a darkroom with florescent light, and in a 

room under diffused sunlight [8]. For the issue of camera 

calibration, in order to convert RGB coordinates to a device-

independent colour representation system, they proposed a 

matrix transformation between the RGB and CIE XYZ 

based on the Macbeth ColourChecker DC chart. This 

calibration is specific for each camera, thus different 

cameras used will need to perform calibration once [8]. The 

acquisition protocol for burn wounds are: (i) distance 

between camera and patient should be about 40-50 cm, (ii) 

healthy skin should appear in the image when possible, (iii) 

the background should be a green/blue sheet, (iv) the flash 

must be on, and (v) the camera should be placed parallel to 

the burn [8-11]. 

Wantanajittikul et al. [12] used 5 burn images provided by 

the medical center in their work. These original images 

contain background information. They divided the 5 burn 

images into a total of 34 sub-images and classify them [12]. 

The database used by Deepak et al. [13] consists of 120 

images which are collected from the internet, self-captured 

from hospitals and scanned from books. All the images used 

are in jpeg format. Images are poor in quality due to poor 

illumination. 

Suvarna et al. [14, 15] collected their skin burn images 

with three different burn depths from the internet, self-

captured from hospital and scanned from biomedical books. 

Each of these burn depths comprised 40 images. These 

images were pre-labeled by a plastic surgeon and used the 

standard jpeg format. 

Tran et al. [16] used real-life burn images provided by the 

hospital. These images were pre-labeled and a total of 396 

burn images were used in this work, with 180 images of 

degree II burn, 192 images of degree III burn and 24 images 

of degree IV burn. 

 

B. Image Segmentation Algorithms 

Many different segmentation algorithms had been applied 

in the literature to segment the skin burn wounds from the 

healthy skin in images. A manual segmentation based on 

CIE L*u*v* colour coordinate space was proposed in the 

works of [8, 10, 11, 17]. According to them, L*u*v* and 

L*a*b* colour representation systems were known as 

uniform system. The reason was because the Euclidean 

distance between the measured colour in these spaces were 

almost similar to human perception of colour differences 

[8]. These two spaces were slightly different from each 

other as a* and b* in L*a*b* are independent from 

luminance, with the colour perception being strongly 

influenced by the luminance. However, both were equally 

good in providing a very good estimation of colour 

differences between the two colour vectors. Thus, the 

authors had chosen the L*u*v* colour space to be used in 

their work [8]. The segmentation algorithm steps proposed 

were: (i) select a small region in the burn wound, and then 

preprocess the image, (ii) convert to a single channel image, 

and finally (iii) threshold and post process [8, 10, 11, 17]. 

The drawback for this algorithm was the requirement of the 

user to manually select the colour to be segmented, thus, 

making it a semi-automated and user-guided approach. This 

may also be prone to bias in human colour perception. This 

segmentation of the burn wound based on the colour 

selected by a user may affect the burn degree classification 

results. For example, if the burn wound consists of mixed 

burns (i.e. Superficial thickness burn and deep partial 

thickness burn), which consist of two colours of different 

degree of burn classes in one burn wound, the user may 

select the colour to be segmented which belonged to the 

superficial thickness burn, despite the burn wound being 

actually deep partial thickness burn. 

Wantanajittikul et al. [12] proposed a new segmentation 

algorithm to separate the skin region from the background 

and then in turn, separate the wound region from the healthy 

skin. The algorithm converted the entire RGB image to the 

Cr-space. Fuzzy C-means (FCM) clustering was then used 

to separate the skin region from the background. After that, 

in order to emphasize the burn wound region, the skin 

region from the RGB-space was converted to the L*u*v* 

space. FCM clustering was used again to separate the wound 

region from the healthy skin. Finally, the segmented wound 

region was preprocessed to eliminate noise by using 

mathematical morphology.  

Tran et al. [16] used a normalization approach by 

normalizing the skin burn image into a standard size with 

the rate of 4:3 in order to remove the non-burn region of the 

images. The burn wound was then segmented according to 

the colour information used in the work of Acha et al. [8], 

which was done by user selection.  

With regards to skin burn images, a related work on other 

medical images in the literature was also reviewed. In a 

study on the assessment of diabetic foot ulcers, the 

segmentation algorithm used was as follows: (i) The foot 

outline was determined within the image by finding the 

largest connected component whereby the colour of the 

component was similar to the preset standard skin colour. 

(ii) The wound boundary was then determined from within 

the foot image based on three assumptions. First, there 

should be a little irrelevant background information from the 

foot image. Second, a nearly uniform colour feature of the 

healthy skin was assumed on the sole of the foot. Third, the 

edge of the foot outline assumed with no ulcer was located. 

(iii) After the wound boundary had been segmented 

successfully, colour segmentation was performed on it using 

K-means to classify the wound into granulation, slough and 

necrosis classes [18]. 

From the previous works reviewed, a segmentation 

algorithm that is able to detect and segment skin burn 
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wound without the involvement of the user is still preferable 

to ensure an automatic approach and to prevent user bias. 

Therefore, a hybrid segmentation method addressing this 

issue is proposed and will be discussed in Section III (A). 

 

C. Features Extraction  

Many different sets of features, either colour, or colour 

and texture, had been proposed in previous works. Colour 

and texture are the two main characteristics proven by burn 

specialist in determining the depth of a burn wound [8]. The 

descriptors chosen in the work of Acha et al. (2005) were: 

mean of lightness (L*), mean of hue (h), mean of chroma 

(c), standard deviation of lightness, standard deviation of 

hue, standard deviation of chroma, mean of u*, mean of v*, 

standard deviation of u*, standard deviation of v*, skewness 

of lightness, kurtosis of lightness, skewness of u*, kurtosis 

of u*, skewness of v* and kurtosis of v* [8], [10], [11], [17]. 

The optimum set of features after applying the descriptor 

selection method were: lightness, hue, standard deviation of 

the hue component, u* chrominance component, standard 

deviation of the v* component, and skewness of lightness.  

Wantanajittikul et al. [12] focused on extracting colour 

and texture features. The features selected were: mean of 

hue (h), the standard deviation of hue (h), the contrast and 

the homogeneity.  

Deepak et al. and Suvarna et al. [13, 14, 15] focused on 

extracting colour features such as the mean and (2,1)th 

coefficient of Discrete Cosine Transform (DCT) function of 

V1 chrominance plane of the L*a*b* colour space.  

The features extracted by Tran et al. [16] were the multi-

colour channels Red, Green, Blue, and Gray, which were 

considered as fast feature extraction with regards to real 

time processing speed. The multi-colour channels were 

converted to binary value to improve the performance of 

machine learning.  

In the classification of MRI brain images, wavelet 

transformation method was used for feature extraction. 

Wavelet transformation has the property of multi-resolution 

analytic, thus it is capable of analyzing images at various 

levels of resolution. The problems with using this were the 

requirement of a large storage space and its expensive 

computational cost. Thus, principal component analysis 

(PCA) was used instead to reduce the dimensions of the 

feature vector to increase the discriminative power [5]. 

Sawakare et al. [6] used Daubechies Wavelet Transform 

(DWT) for feature extraction in MRI brain tumor images. 

They chose DWT is because DWT provide a good contrast 

to an image. They also make a comparison between Discrete 

Cosine Transform (DCT) and DWT by stating that DWT 

provide a better image quality than DCT at the higher 

threshold value while at the lower threshold value, both 

DCT and DWT have the same performance. The DWT 

transform the image into four sub band, which are LL, LH, 

HH, and HL images. DWT calculation only performed on 

LL sub band image. Gray Level Co-occurrence Matrix 

(GLCM) was used for texture feature extraction. In their 

work, statistical texture features such as contrast, 

correlation, energy, homogeneity and entropy were obtained 

at the first five levels of wavelet decomposition of LH and 

HL sub bands. PCA was used to reduce the dimensions and 

the computational complexity as well as to extract the best 

feature. The feature extraction approach proposed were: (i) 

Feature extraction by using DWT, (ii) Texture feature 

extraction by using GLCM and (iii) Feature selection by 

using PCA.  

 

D. Image Classification Methods 

The classifier used by Acha et al. [8] for classification of 

burn depth was a Fuzzy-ARTMAP neural network. This 

network was developed by Grossberg and Carpenter [19] 

that was based on Adaptive Resonance Theory. Fuzzy-

ARTMAP is used because it has understandable theoretical 

properties, is efficient to implement, and has clustering 

properties that are similar to human perception. It is also 

successfully used in industrial and medical applications. 

Apart from that, the small number of design parameters of 

this network, as well as the initial and architecture values are 

always consistent [8]. This network was tested on 62 burn 

images, with an average success percentage of 82.26%. The 

percentage of misclassifications was 55%, in which the 

images were classified as superficial dermal types when 

they were actually deep dermal burn, and vice versa [8], 

[10]. Serrano et al. [11] tested on 35 burn images with the 

same descriptor and Fuzzy-ARTMAP neural network. Their 

work yielded an average success percentage of 88.6%.  An 

average success percentage of 88.89% was obtained when 

they tested 18 times on 16 images and two of them 

presented two different depths in another work of Acha et al. 

[17]. 

The classifier used in the work of Wantanajittikul et al. 

[12] was support vector machine (SVM). The results were 

compared with that from Bayes and kNN classifiers. The 

best result was obtained by SVM on the validation sets of 4-

fold cross validation with 89.29% whereas for the blind test 

experiment, a correct classification of 75.33% was obtained. 

The classifiers used by Deepak et al. [13] and Suvarna et 

al. [15] for the classification of skin burn grades were 

Template Matching (TM), nearest neighbor classifier (kNN) 

and Support Vector Machine (SVM). SVM produced the 

best results of 90% for both works among the three 

classifiers, with template matching method yielding an 

efficiency of 66% while kNN classifier yield an efficiency 

of 75%. In another work of Suvarna et al. [14], they used 

Template Matching (TM), k Nearest Neighbor Classifier 

(kNN) and Artificial Neural Network (ANN) to compare the 

performance of these classifiers on skin burn images. ANN 

produced the best results by yielding 95% for Grade 1 

(Superficial) burn, 97.5% for Grade 2 (Partial Thickness) 

burns and 95% for Grade 3 (Full Thickness) burns as 

compared to TM, which yielded 55%, 72.5% and 70% for 

Grade 1, Grade 2, and Grade 3 respectively and for kNN 

which produced 67.5%, 82.5%, and 75% respectively. 

The classifier used by Tran et al. [16] for burn image 

classification was one-class SVM instead of the traditional 

SVM due to the imbalance degrees of burn data available. 

The best classification results obtained using one-class SVM 

with polynomial kernel was an accuracy of 77.78% 

compared to  using SVM with polynomial kernel which had 

an accuracy of 73.73%. 

Zhang et al. [5] used kernel support vector machine 

(KSVM) with K-fold stratified cross validation for the 

classification of MRI brain tumor images. They tested with 

four different kernels which are LIN, HPOL, IPOL, and 

GRB. They obtained the highest classification accuracy of 

99.38% with GRB kernel as compared to 95%, 96.88%, and 

98.12% for LIN, HPOL, and IPOL respectively. 

Sawakare et al. [6] used Probabilistic Neural Network 

(PNN) for the classification of MRI brain tumor images. 
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They yield a maximum recognition rate of 100% for the 

classification method. 

 

III. IMAGE MINING APPROACH  

 

This work proposes to use an image mining approach to 

evaluate the image of a skin burn injury and classify the 

burn injury into one of the burn depths.  Image mining is not 

just an extension of data mining to image domain. It is an 

interdisciplinary field with a combination of techniques such 

as computer vision, image processing, image retrieval, data 

mining, machine learning, database and artificial 

intelligence [20]. Figure 2 shows the image mining approach 

that is used in this work. The image mining approach 

consists of several processes. 

 

 

 

 

 

 

 

 

 
Figure 2: Image mining approach 

 

The first process is image acquisition whereby a sample 

of images are collected and stored in the image database. 

For every image, the segmentation algorithm will detect and 

segment the skin burn wound by removing the background 

information and healthy skin region. The segmented image 

undergoes various transformation and image features are 

extracted to represent the corresponding image content. The 

extracted features then act as an input for various classifiers 

to classify. The final step is to analyze and compare the 

different classification results obtained and identifying the 

best algorithms for all the three burn depths. The following 

sub-sections will discuss in depth on each of the processes 

in the image mining approach.  

 

A. Image Acquisition 

The burn images used in this work were collected by burn 

specialist. The skin burn depths considered in this work are 

second degree burn and third degree burn. The burn images 

are categorized into superficial partial thickness (SPT) burn, 

deep partial thickness (DPT) burn and full thickness (FT) 

burn. The total images collected are shown in Table 1. 

 
Table 1 

Total Images Collected 

 

Burn Depth Total Images Collected 

Superficial Partial Thickness Burn 82 

Deep Partial Thickness Burn 48 
Full Thickness Burn 34 

Total 164 

 

B. Image Segmentation 

A hybrid segmentation method was used, which hybrided 

the method used by Saranya et al. [18] for separating the 

healthy skin region from the background information in an 

image and Otsu’s method of thresholding for segmentation 

of tumor in brain images used by Otsu [7] and Manu [21].  

The segmentation process consists of two parts: the body 

part outline detection and the burn wound detection. The 

body part outline detection finds the largest connected 

component in which the colour of the component is closest 

to the standard skin colour. The burn wound detection is 

based on the body part outline detection results. If the body 

part outline detection results is correct, the body part area is 

then marked as ‘white’ and the rest of the background image 

is marked as ‘black’ in  a binary image. This way, it is easier 

to identify the burn wound located within the body part 

region.  

The body part outline detection uses RGB colour space to 

discover the colour of connected components that is close to 

the skin colour. Many other experiments had been carried 

out in finding the suitable colour space, for example, HSV 

and YCbCr colour spaces, which are able to detect the body 

part outline that is closest to the standard skin colour. 

However, the best results were obtained using the RGB 

colour space. 

The threshold value that was used to segment the skin 

regions based on RGB colour space is shown in Equation 1 

below [22]: 

 

 

 

 

 

where: R= Red channel 

  G= Green channel 

  B= Blue channel 

(1) 

 

The segmented body part region was converted from RGB 

to CIE L*a*b colour space. After that, the a* component is 

chosen to be used for burn wound determination due to its 

high intensity compared to the b* component as shown in 

Figure 3, 4 and 5. 

 

 
 

Figure 3: Comparison between a* and b* components in superficial partial 

thickness burn image 

 

 
 

Figure 4: Comparison between a* and b* components in deep partial 

thickness burn image 

 

      R > 95 & G > 40 & B > 20  

      max(R, G, B) – min(R, G, B) > 15       

      |R - G| > 15 & R > G & R > B 
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Figure 5: Comparison between a* and b* components in full thickness burn 
image 

 

The Otsu’s method of thresholding is then used to 

segment the burn wound from the body region [7]. The post-

processing is performed to smooth the segmented burn 

wound regions by filling the small holes, which are the 

small gaps found in between the segmented burn wound. 

The algorithm for the hybrid segmentation method used is 

presented as follows: 

 
1. BEGIN 

2. INPUT: colour skin burn image 

3. Resize the image to 200 x 200 pixels 

4. IF size (image, 3) > 1 
final_image = zeros of size (image, 1) and size (image, 2); 
FOR i = 1: size (image, 1) 

FOR j = 1: size (image, 2) 

SET R variable = image (i, j, 1); 

SET G variable = image (i, j, 2); 

SET B variable = image (i, j, 3); 

IF R > 95 & G > 40 & B > 20  

IF max(R, G, B) – min(R, G, B) > 15     

IF |R - G| > 15 & R > G & R > B 

SET final_image variable to ‘1’ 

ENDIF 

ENDIF 

ENDIF 

ENDFOR 

ENDFOR 

5. ENDIF 

6. Convert segmented body part region from RGB to CIE L*a*b colour 

space 

7. Extract a*, in which a* = lab (:, :, 2); 

8. Convert a* matrix to grayscale 

9. Apply graythresh(), an Otsu’s method of thresholding on the grayscale 

10. The burn wound is segmented  

11. Apply imdilate() to dilate the burn wound 

12. Apply imfill() to fill the small holes in the burn wound 

13. Apply imerode() to erode the burn wound 

14. END 

 

The burn wound detection can work well with the 

following assumptions. First, the burn image contains little 

irrelevant background information and it is even better if the 

background colour is different from the skin colour. Second, 

the healthy skin of any body part should present a nearly 

uniform colour feature. Third, the burn wound is within the 

skin region.  

  

C. Feature Extraction 

After the burn wound had been successfully segmented, 

feature extraction was performed. Both colour and texture 

were used in combination as features to evaluate the 

different burn depths. The colour feature extraction was 

done by finding the statistical colour moments, for example, 

mean, standard deviation, skewness and so on for each 

coordinate of the L*a*b* colour spaces as well as the 

derived hue and chroma image plane [8]. 

For texture feature extraction, discrete wavelet transform 

(DWT) was used, followed by principle component analysis 

(PCA) which reduced the feature dimensions [5]. The skin 

burn images in the dataset comprised many different 

qualities and resolution levels. Therefore, to extract all the 

significant features from the skin burn images with various 

qualities, both DWT and PCA were used in this work. After 

the feature reduction by PCA, Gray Level Co-occurrence 

Matrix (GLCM) method was applied to extract the statistical 

texture features [6], [21]. The extracted features are mean of 

lightness, mean of hue, standard deviation of hue, standard 

deviation of A* component, standard deviation of B* 

component, and skewness of lightness for colour [8] and 

contrast, correlation, energy, homogeneity, mean, entropy, 

smoothness, kurtosis, skewness and inverse difference 

moment (IDM) [21] for texture. 

Feature vectors for the skin burn images in three different 

burn depths were formed consecutively to be used as input 

to train the classifier. The feature vectors for test images 

were also formed in the same way as in feature vectors for 

train images. 

 

D. Burn Depth Classification 

The performance of different classification algorithms 

was compared using a machine learning workbench, the 

Waikato Environment for Knowledge Analysis (WEKA) 

[23]. 20 classification algorithms were used on the skin burn 

dataset for this comparative study. The different 

classification algorithms used are briefly described in Table 

2. 

Classification of the skin burn images was carried out 

using the binary classification approach, by taking one class 

versus all the other classes. The test methods used are 

supplied test set and 10-fold cross validation. The supplied 

test set method was performed by splitting the dataset into 

two sets, 70% and 30% for training and testing respectively.  

The metrics used to evaluate the performance of the 

classifiers were accuracy, precision, recall and F-measure. 

The values for precision, recall and F-measure were 

recorded by taking the weighted average. 

 

IV. RESULTS AND DISCUSSION 

 

A. Image Segmentation 

Table 3 shows the total images that were correctly 

segmented which were then used for feature extraction and 

classification. Figures 6, 7 and 8 show a sample 

segmentation result for each of the three different burn 

depths. The results showed that segmentation of the burn 

wound were correctly performed. 

 

 
 

Figure 6: Segmentation result for superficial partial thickness burn 

 

 
 

Figure 7: Segmentation result for deep partial thickness burn 
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Figure 8: Segmentation result for full thickness burn 

 
Table 2 

Different Classification Algorithms used in Weka [23] 

 

Classification 

Algorithms 
Description 

BayesianLogisticRe

gression 

Bayesian Logistic Regression for both Gaussian 

and Laplace Priors is implemented. 

NaiveBayes 

Estimator classes is used and the training data 

are analyzed to choose the estimator precision 

values. 

Logistic 

A multinomial logistic regression model with a 

ridge estimator is built and used by this 

classifier. 

Simple Logistic 

Logistic regression models is built using this 

classifier. LogitBoost is used as base learners to 

fit the logistic models. 

SMO 

This classifier was implemented by John Platt’s 

sequential minimal optimization algorithm for 

training a support vector classifier. 

VotedPerceptron 

This classifier was implemented by Freund and 

Schapire, which globally replaces all the 

missing values, and transforms nominal 
attributes into binary ones. 

KStar 

An instance-based classifier, K* which is the 
class of a test instance is based on the class of 

those training instances similar to it, as 

determined by some similarity function. An 
entropy-based distance function is used which 

make it differs from other instance-based 

learners. 

LWL (Locally 
Weighted Learning) 

An instance-based algorithm is use to assign 

instance weights which are then used by a 

specified WeightedInstancesHandler. 

Bagging 

A class that reduces variance, and is able to 

perform classification and regression depending 

on the base learner. 
ClassificationViaClu

stering 
A clusterer is use for classification. 

ClassificationViaRe
gression 

Regression methods is used to do classification. 

MultiClassClassifier 
A meta classifier that handles multi-class 

datasets with 2-class classifiers. 

RandomSubSpace 

A decision tree based classifier is constructed 

that maintains highest accuracy on training data 

and improves on generalization accuracy as it 
grows in complexity. 

VFI (Voting Feature 

Intervals) 

The intervals are constructed around each class 

for each attribute, and class counts are recorded 
for each interval on each attribute. 

DecisionTable 
A simple decision table majority classifier is 

build and use by this classifier. 

JRip 

A classifier that proposed by William W. was 

implemented with a propositional rule learner, 

Repeated Incremental Pruning to Produce Error 
Reduction (RIPPER). 

OneR 

A 1R classifier is built and used by this 

classifier, which means minimum-error 
attribute is used for prediction and discretizing 

numeric attributes. 

J48 
A pruned or unpruned C4.5 decision tree is 
generated. 

LMT (Logistic 

Model Trees) 

A ‘logistic model trees’ is built, by which the 

classification trees with logistic regression 
functions at the leaves. 

RandomForest A forest of random trees is constructed. 

 

 

Table 3 
Total Images that are Correctly Segmented 

 

Burn Depth 

Total 

Images 

Collected 

Total Images that 

are Correctly 

Segmented 

Superficial Partial Thickness Burn 82 65 

Deep Partial Thickness Burn 48 41 
Full Thickness Burn 34 17 

Total 164 123 

 

B. Feature Extraction 

Table 4 shows the types of features extracted to be used as 

input to the classifiers. These features were extracted for 

each class of burn depths for both training and testing 

images. 

 
Table 4 

Features Extracted for Colour and Texture 

 

Type of 

features 
Features extracted 

Colour 

Mean of lightness, mean of hue, standard deviation of 

hue, standard deviation of A* component, standard 
deviation of B* component, and skewness of lightness 

Texture 

Contrast, correlation, energy, homogeneity, mean, 

entropy, smoothness, kurtosis, skewness and inverse 
difference moment (IDM) 

 

C. Classification 

Table 5 shows the dataset specification for evaluation 

using both the supplied test set and 10-fold cross validation 

methods.   

 
Table 5 

Dataset Specification for Supplied Test Set and 10-Fold Cross Validation 

Methods 
 

Burn Depth 

Supplied Test Set Method 10-Fold 

Cross 
Validation 

Method 

Train Set 

(70%) 

Test Set 

(30%) 

Superficial Partial 

Thickness Burn 
43 22 65 

Deep Partial Thickness 

Burn 
24 17 41 

Full Thickness Burn 11 6 17 
Total 78 45 123 

 

Table 6, 7, and 8 show the classification results of the 

supplied test set method whereas Table 9, 10 and 11 show 

the classification results of the 10-fold cross validation 

method for all the three burn depths. 

Based on Table 6, Logistic and MultiClassClassifier 

showed the best performance using the supplied test set 

method on superficial partial thickness burn images. Based 

on Table 7 and 8, for deep partial thickness burn and full 

thickness burn images respectively, OneR produced the best 

performance using the supplied test set method. 

From Table 9, VFI has the best performance using the 10-

fold cross validation method on superficial partial thickness 

burn images. For Table 10 and 11 respectively, the best 

performance for deep partial thickness burn images was 

ClassificationViaClustering and for full thickness burn 

images, the ClassificationViaRegression produced the best 

performance. 
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Table 6 
Classification Results of Supplied Test Set for Superficial Partial Thickness 

Burn 

 

Classification Algorithms 

Supplied Test Set (Superficial Partial 

Thickness Burn) 

Accuracy Precision Recall 
F-

measure 

BayesianLogisticRegression 53.3% 0.5 0.5 0.5 

NaiveBayes 53.3% 0.6 0.5 0.5 

Logistic 62.2% 0.7 0.6 0.6 

Simple Logistic 57.8% 0.6 0.6 0.5 

SMO 48.9% 0.5 0.5 0.5 

VotedPerceptron 46.4% 0.5 0.5 0.4 

KStar 51.1% 0.5 0.5 0.5 

LWL 46.7% 0.5 0.5 0.5 

Bagging 44.4% 0.4 0.4 0.4 

ClassificationViaClustering 51.1% 0.5 0.5 0.4 

ClassificationViaRegression 46.7% 0.5 0.5 0.5 

MultiClassClassifier 62.2% 0.7 0.6 0.6 

RandomSubSpace 48.9% 0.5 0.5 0.5 

VFI 51.1% 0.5 0.5 0.5 

DecisionTable 48.9% 0.5 0.5 0.5 

JRip 42.2% 0.4 0.4 0.4 

OneR 44.4% 0.4 0.4 0.4 

J48 42.2% 0.4 0.4 0.3 

LMT 57.8% 0.6 0.578 0.5 

RandomForest 53.3% 0.5 0.533 0.5 

 
Table 7 

Classification Results of Supplied Test Set for Deep Partial Thickness Burn 

 

Classification Algorithms 

Supplied Test Set (Deep Partial Thickness 

Burn) 

Accuracy Precision Recall 
F-

measure 

BayesianLogisticRegression 62.2% 0.6 0.6 0.6 

NaiveBayes 60.0% 0.6 0.6 0.6 

Logistic 68.9% 0.7 0.7 0.7 

Simple Logistic 62.2% 0.6 0.6 0.6 

SMO 60.0% 0.5 0.6 0.5 

VotedPerceptron 62.2% 0.6 0.6 0.6 

KStar 60.0% 0.6 0.6 0.6 

LWL 62.2% 0.6 0.6 0.6 

Bagging 60.0% 0.5 0.6 0.5 

ClassificationViaClustering 64.4% 0.6 0.6 0.6 

ClassificationViaRegression 62.2% 0.6 0.6 0.6 

MultiClassClassifier 68.9% 0.7 0.7 0.7 

RandomSubSpace 60.0% 0.5 0.6 0.5 

VFI 62.2% 0.6 0.6 0.6 

DecisionTable 60.0% 0.5 0.6 0.5 

JRip 60.0% 0.6 0.6 0.6 

OneR 73.3% 0.7 0.7 0.7 

J48 57.8% 0.5 0.6 0.5 

LMT 62.2% 0.6 0.6 0.6 

RandomForest 57.8% 0.6 0.6 0.6 

 
Table 8 

Classification Results of Supplied Test Set for Full Thickness Burn 

 

Classification Algorithms 

Supplied Test Set (Full Thickness Burn) 

Accuracy Precision Recall 
F-

measure 

BayesianLogisticRegression 86.7% 0.8 0.9 0.8 

NaiveBayes 73.3% 0.8 0.7 0.8 

Logistic 75.6% 0.7 0.8 0.7 

Simple Logistic 86.7% 0.8 0.9 0.8 

SMO 86.7% 0.8 0.9 0.8 

VotedPerceptron 86.7% 0.8 0.9 0.8 

KStar 73.3% 0.7 0.7 0.7 

LWL 86.7% 0.8 0.9 0.8 

Bagging 86.7% 0.8 0.9 0.8 

ClassificationViaClustering 75.6% 0.7 0.9 0.8 

ClassificationViaRegression 84.4% 0.7 0.8 0.8 

MultiClassClassifier 75.6% 0.7 0.8 0.7 

RandomSubSpace 86.7% 0.8 0.9 0.8 

VFI 84.4% 0.9 0.8 0.9 

DecisionTable 86.7% 0.8 0.9 0.8 

JRip 86.7% 0.8 0.9 0.8 

OneR 88.9% 0.9 0.9 0.9 

J48 86.7% 0.8 0.9 0.8 

LMT 86.7% 0.8 0.9 0.8 

RandomForest 84.4% 0.7 0.8 0.8 

 

The 10-fold cross validation method takes the average of 

the different test partitions in the dataset while the supplied 

test set method uses a fixed test set. These two evaluation 

methods were experimented to see if using different test sets 

affect the performance of the classifiers. This was certainly 

the case as observed in the results presented for each of the 

three burn depths. Since the 10-fold cross validation method 

takes the average of all partitions in the dataset, its results 

would be void of bias and more consistent. 

On closer inspection of the misclassifications, there were 

some superficial partial thickness burn which were 

misclassified as deep partial thickness burn, and vice versa. 

The reason of this is because in some burn wounds, two 

depths of wound are present, which is known as “mix partial 

thickness burn”. When this happens, the burn wound is 

usually classified into the more serious type of burn depth. 

However, in this work, for example, some images of deep 

partial thickness burn was misclassified as superficial partial 

thickness burn. This was due to the reason that the deep 

partial thickness burn, usually cream or almost white in 

colour, was surrounded by superficial partial thickness burn. 

Therefore, the classifier would recognize it as a superficial 

thickness burn. It is also possible that the classifier 

misclassified a burn depth by its surface area. For instance, 

in a mix partial thickness burn of superficial partial 

thickness burn and full thickness burn, in which the image 

should actually be a full thickness burn, the classifier 

misclassified it as superficial partial thickness due to the fact 

that the superficial partial thickness burn had a larger 

surface area than the full thickness burn. 

The overall performances for each classifier for all three 

burn depths are shown in Table 12 and 13 for the supplied 

test set and 10-fold cross validation methods respectively, 

taking the average accuracy of the three burn depths. From 

Table 12, it can be seen that Logistic, Simple Logistic, 

MultiClassClassifier, OneR and LMT produced the same 

accuracies and are best in classifying the images in the 

dataset using the supplied test set method, with an average 

accuracy of 68.9%. In Table 13, an average accuracy of 

73.2% was achieved with Simple Logistic using the 10-fold 

cross validation method for classifying the images in the 

dataset. The results indicated that Simple Logistic using the 

10-fold cross validation method produced the best 

classification performance for the skin burn dataset. While it 

was noted that SVM performed very well in literature, this 

was not observed in the experiments with Sequential 

Minimal Optimization (SMO), an algorithm to train a 

support vector classifier in this work. 

 
Table 9 

Classification Results of 10-Fold Cross Validation for Superficial Partial 

Thickness Burn 

 

Classification Algorithms 

10-fold Cross Validation (Superficial Partial 

Thickness Burn) 

Accuracy Precision Recall 
F-

measure 

BayesianLogisticRegression 58.5% 0.6 0.6 0.6 

NaiveBayes 57.7% 0.6 0.6 0.6 

Logistic 61.0% 0.6 0.6 0.6 

Simple Logistic 64.2% 0.6 0.6 0.6 

SMO 57.7% 0.6 0.6 0.6 

VotedPerceptron 56.9% 0.6 0.6 0.6 

KStar 61.8% 0.6 0.6 0.6 

LWL 48.0% 0.5 0.5 0.5 

Bagging 50.4% 0.5 0.5 0.5 

ClassificationViaClustering 53.7% 0.5 0.5 0.5 

ClassificationViaRegression 55.3% 0.6 0.6 0.6 

MultiClassClassifier 61.0% 0.6 0.6 0.6 

RandomSubSpace 57.7% 0.6 0.6 0.6 

VFI 65.9% 0.7 0.7 0.6 

DecisionTable 49.6% 0.4 0.5 0.4 

JRip 53.7% 0.5 0.5 0.5 

OneR 56.1% 0.6 0.6 0.6 
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J48 60.2% 0.6 0.6 0.6 

LMT 63.4% 0.6 0.6 0.6 

RandomForest 54.5% 0.5 0.5 0.5 

 
Table 10 

Classification Results of 10-Fold Cross Validation for Deep Partial 
Thickness Burn 

 

Classification Algorithms 

10-fold Cross Validation (Deep Partial 

Thickness Burn) 

Accuracy Precision Recall 
F-

measure 

BayesianLogisticRegression 69.1% 0.7 0.7 0.6 

NaiveBayes 65.9% 0.6 0.7 0.6 

Logistic 65.0% 0.6 0.7 0.6 

Simple Logistic 69.9% 0.7 0.7 0.7 

SMO 67.5% 0.6 0.7 0.6 

VotedPerceptron 69.1% 0.7 0.7 0.6 

KStar 60.2% 0.6 0.6 0.6 

LWL 65.0% 0.6 0.7 0.6 

Bagging 65.9% 0.6 0.7 0.6 

ClassificationViaClustering 72.4% 0.7 0.7 0.7 

ClassificationViaRegression 66.7% 0.7 0.7 0.7 

MultiClassClassifier 65.0% 0.6 0.7 0.6 

RandomSubSpace 67.5% 0.7 0.7 0.6 

VFI 67.5% 0.7 0.7 0.7 

DecisionTable 66.7% 0.6 0.7 0.5 

JRip 62.6% 0.6 0.6 0.6 

OneR 64.2% 0.6 0.6 0.6 

J48 65.0% 0.6 0.7 0.6 

LMT 69.9% 0.7 0.7 0.7 

RandomForest 68.3% 0.7 0.7 0.7 

 
Table 11 

Classification Results of 10-Fold Cross Validation for Full Thickness Burn 
 

Classification Algorithms 

10-fold Cross Validation (Full Thickness Burn) 

Accuracy Precision Recall 
F-

measure 

BayesianLogisticRegression 86.2% 0.7 0.9 0.8 

NaiveBayes 53.7% 0.8 0.5 0.6 

Logistic 82.9% 0.8 0.8 0.8 

Simple Logistic 85.4% 0.8 0.9 0.8 

SMO 86.2% 0.7 0.9 0.8 

VotedPerceptron 86.2% 0.7 0.9 0.8 

KStar 75.6% 0.8 0.8 0.8 

LWL 79.7% 0.8 0.8 0.8 

Bagging 83.7% 0.7 0.8 0.8 

ClassificationViaClustering 70.7% 0.7 0.8 0.8 

ClassificationViaRegression 87.0% 0.8 0.9 0.8 

MultiClassClassifier 82.9% 0.8 0.8 0.8 

RandomSubSpace 86.2% 0.7 0.9 0.8 

VFI 64.2% 0.8 0.6 0.7 

DecisionTable 82.1% 0.7 0.8 0.8 

JRip 78.9% 0.8 0.8 0.8 

OneR 83.7% 0.8 0.8 0.8 

J48 80.5% 0.8 0.8 0.8 

LMT 85.4% 0.8 0.9 0.8 

RandomForest 84.6% 0.8 0.8 0.8 

 

V. CONCLUSION 

 

A comparative study of the classification of skin burn 

depth in human was conducted using an image mining 

approach.  A hybrid segmentation method was implemented, 

in which the method would first separate the body part or 

skin region from the background of the image. After 

successfully segmenting the body part, the method would 

detect the burn wound within the skin region. Both colour 

and texture features were then extracted and used in 

combination. Discrete wavelet transform (DWT) and 

principle component analysis (PCA) were used for feature 

extraction. Gray Level Co-occurrence Matrix (GLCM) 

method was used to extract texture features. There were a 

total of 20 classification algorithms used to classify the skin 

burn dataset comprising of three different burn depths, and 

the performance of these classifiers were measured by 

accuracy, precision, recall, and F-measure.  Two test 

methods were used in the experiments, which were the 

supplied test set and 10-fold cross validation methods. The 

classification was carried out according to the binary 

classification approach, by taking one class versus all other 

classes. The best classification algorithm that was able to 

classify most of the three burn depths was Simple Logistic 

using the 10-fold cross validation method, producing an 

average accuracy of 73.2%. Some observations on 

misclassifications provided insights for future improvement 

of the image mining approach. In future, multi-class 

classification will be conducted to see how the compared 

classifiers perform. 
 

Table 12 
Average Accuracies for All Three Burn Depths Using the Supplied Test Set 

Method 

 

Classification 

Algorithms 

Supplied Test Set 

Superficial 

Partial 

Thickness 

Burn 

Deep 

Partial 

Thickness 

Burn 

Full 

Thickness 

Burn 

Average 

Accuracy 

BayesianLogisticRegre

ssion 
53.3% 62.2% 86.7% 67.4% 

NaiveBayes 53.3% 60.0% 73.3% 62.2% 

Logistic 62.2% 68.9% 75.6% 68.9% 

Simple Logistic 57.8% 62.2% 86.7% 68.9% 

SMO 48.9% 60.0% 86.7% 65.2% 

VotedPerceptron 46.4% 62.2% 86.7% 65.1% 

KStar 51.1% 60.0% 73.3% 61.5% 

LWL 46.7% 62.2% 86.7% 65.2% 

Bagging 44.4% 60.0% 86.7% 63.7% 

ClassificationViaClust

ering 
51.1% 64.4% 75.6% 63.7% 

ClassificationViaRegre

ssion 
46.7% 62.2% 84.4% 64.4% 

MultiClassClassifier 62.2% 68.9% 75.6% 68.9% 

RandomSubSpace 48.9% 60.0% 86.7% 65.2% 

VFI 51.1% 62.2% 84.4% 65.9% 

DecisionTable 48.9% 60.0% 86.7% 65.2% 

JRip 42.2% 60.0% 86.7% 63.0% 

OneR 44.4% 73.3% 88.9% 68.9% 

J48 42.2% 57.8% 86.7% 62.2% 

LMT 57.8% 62.2% 86.7% 68.9% 

RandomForest 53.3% 57.8% 84.4% 65.2% 

Average 50.7% 62.3% 83.5% 65.5% 

 
Table 13 

Average Accuracies for All Three Burn Depths Using the 10-Fold Cross 

Validation Method 

 

Classification 

Algorithms 

10-fold Cross Validation 

Superficial 

Partial 

Thickness 

Burn 

Deep 

Partial 

Thickness 

Burn 

Full 

Thickness 

Burn 

Average 

Accuracy 

BayesianLogisticRegre

ssion 
58.5% 69.1% 86.2% 71.3% 

NaiveBayes 57.7% 65.9% 53.7% 59.1% 

Logistic 61.0% 65.0% 82.9% 69.6% 

Simple Logistic 64.2% 69.9% 85.4% 73.2% 

SMO 57.7% 67.5% 86.2% 70.5% 

VotedPerceptron 56.9% 69.1% 86.2% 70.7% 

KStar 61.8% 60.2% 75.6% 65.9% 

LWL 48.0% 65.0% 79.7% 64.2% 

Bagging 50.4% 65.9% 83.7% 66.7% 

ClassificationViaCluste

ring 
53.7% 72.4% 70.7% 65.6% 

ClassificationViaRegre

ssion 
55.3% 66.7% 87.0% 69.7% 

MultiClassClassifier 61.0% 65.0% 82.9% 69.6% 

RandomSubSpace 57.7% 67.5% 86.2% 70.5% 

VFI 65.9% 67.5% 64.2% 65.9% 

DecisionTable 49.6% 66.7% 82.1% 66.1% 

JRip 53.7% 62.6% 78.9% 65.1% 

OneR 56.1% 64.2% 83.7% 68.0% 

J48 60.2% 65.0% 80.5% 68.6% 

LMT 63.4% 69.9% 85.4% 72.9% 

RandomForest 54.5% 68.3% 84.6% 69.1% 

Average 57.4% 66.7% 80.3% 68.1% 
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